
Limit distribution of an infinite-range random Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 3307

(http://iopscience.iop.org/0305-4470/15/10/033)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 3307-3312. Printed in Great Britain 
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Received 19 March 1982 

Abstract. The limit distribution of a random king model (site disorder) with an exchange 
interaction of infinite range is calculated exactly. It is shown that randomness changes 
the analytic properties of the limit distribution at the critical point considerably. At 
criticality this system cannot be described by a Hamiltonian which is a polynomial in the 
spin variables. 

1. Introduction 

The renormalisation group theory of Kadanoff, Wilson and Fisher has been very 
successful in describing critical properties of homogeneous ferromagnetic systems. In 
contrast to this, critical properties of inhomogeneous ferromagnetic systems, 
specifically those with frozen disorder, are less well understood. Early attempts (for 
instance Grinstein and Luther 1975) fail to describe the experiments properly, later 
attempts (Sobotta and Wagner 1978), although in better agreement, exhibit divergen- 
cies which are difficult to understand and are difficult to remove. All these attempts 
to describe the critical properties of random spin systems are based on a Ginzburg- 
Landau-Wilson type of Hamiltonian, i.e. on a Hamiltonian which is essentially a 
polynomial in the spin variable. 

In this rather confusing situation one might be inclined to question the validity of 
this kind of approach and look for a different one which is less intuitive and more 
rigorous. Therefore we use the probabilistic approach to critical phenomena (for a 
review compare Cassandro and Jona-Lasinio 1978), which deals with the distribution 
function of strongly dependent random variables-for instance spins of a ferromagneti- 
cally coupled Ising system-in the thermodynamic limit. Generally, it turns out that 
for temperatures T, which differ from the critical temperature T,, the limit distribution 
is a Gaussian one, which is well known from weakly dependent or independent random 
variables (central limit theorem, Renyi 1973). At T = T,, however, one finds a 
non-Gaussian distribution, in general. Of course, the two approaches are connected 
(Sinai 1978) and realistic physical problems are not easier to handle in the probabilistic 
approach than in the other one. 

However, it has been shown recently (Ellis and Newman 1978, Ellis et a1 1980) 
that even in the unphysical limit of infinite range of interaction (mean field approxima- 
tion) the limit distribution of an Ising ferromagnet can be non-Gaussian at T = T,, 
if the limit N -* 00 is taken appropriately. It may therefore be interesting to study the 
influence of randomness on the distribution function in this non-trivial limit. 
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2. The infinite-range Ising model 

We deal with a ferromagnetic Ising model with site disorder. Each site i of a lattice 
can be occupied by a spin Si with probability p. If Ki  is a random occupation number, 
which takes the value Ki = 0 if i is unoccupied, and Ki = 1 if i is occupied by a spin, 
the Hamiltonian of the system is given by 

with Si = 21, Jij > 0. H is the external magnetic field and N is the number of sites of 
the lattice. 

The probability P that the system is in a definite configuration of spins, {Si}, and 
of occupation numbers, {K i } ,  ( = distribution of the spins over the lattice) is given by 

P({Ki.), {Si 1) = P (Wi l)P({Si IIWi }) (2 .2)  

where P({Si}I{Ki}) is the conditional probability that for a given spatial distribution of 
spins over the lattice, {&}, a definite spin configuration {Si} can be found. Obviously, 
the conditional probability is given by the usual Boltzmann factor 

P({Si}I{KiI) = 2,' exp(-PXc) (2 .3)  

where c is a definite spatial configuration, c = {K i } ,  and where H,  is the appropriate 
Hamiltonian (energy) and 2, = Tr exp(-&Ec) is the related partition function. @ is 
the inverse temperature. The a priori probability p({Ki} )  for a definite distribution of 
randomly distributed spins over the lattice is given by 

In the limit of an exchange interactionJij with infinite range we put, to ensure extensivity 
of the energy, Jij = ( l / N ) J .  Instead of equation (2.1) we then have for the Hamiltonian 

where n is the number of occupied sites. 

random variables 
Now we have essentially two different random variables; accordingly we define as 

where ( K i )  = p  is the configuration averaged mean value of the occupation number 
and where K is the critical index associated with X. Obviously, X can take values x 

( n  - p N )  (2.7)  = N-"l2 

with 0 4 n s N,  where n is an integer. 
The second random variable refers to the spins and is defined by 

where v0 is the mean value of KiSi, i.e. the mean value of the magnetisation per site. 
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p is the critical index associated with Y. The values of K and p are in the interval 
(1,2) (Cassandro and Jona-Lasinio 1978). If m is the number of down spins and 
n -m the number of up spins for a given distribution of spins, characterised by n, Y 
can take values y given by 

with O s m  s n .  

to equations (2.1)-(2.3), by 
Now, the probability that Y takes a value y and X a value x is given, according 

where p(x) is the probability that n sites are occupied by spins in a lattice of N sites, 

(2.1 1) 

with x given by equation (2.7). In equation (2.10) the exchange constant J has been 
absorbed into P and H respectively. The denominator of equation (2.10) corresponds 
to the partition function Z ( x )  of a lattice with n spins. 

3. The limit distribution 

Since the conditional probability P(yIx) is normalised to 1, I;,P(yIx) = 1, the limit 
distribution p (x) as given by equation (2.11) is the Gaussian distribution of independent 
random variables (for instance, Renyi 1973), given by 

(3.1) 

Similarly, utilising Stirling's formula, we find after some straightforward calculation 

p(x) = [27rNp(1 -p)]-"* exp[-x2/2p(l - p ) ]  

for N-*m and with K = 1. 

P(ylx)=Z- ' (x)  exp N"/'x[ln Np -dIniNZ(p2-&)1 [ 

1 1 Np+r/2-2  

+ 4 xy2((P +UO) 2 +  (p -uo)2), 



3310 D Wagner 

with K = 1. Terms which vanish in the limit N -*CO for p S 2  have been left out. In 
order to get a normalisable distribution function for N + o;, the factor of NPI2y in the 
exponent has to vanish, which gives 

This gives the magnetisation go as a function of T and H. For p = 1 equation (3.3) 
is the well known mean field result for ao. For p < 1 one can put (TO = p a ,  where a 
is now given by the mean field equation of the homogeneous system with p = 1 but 
with an exchange constant rescaled by a factor p .  

For a. > 0 and H a 0 one has from equation (3.3) 

Therefore in the region a o > O ,  which covers the ferromagnetic region as well as the 
paramagnetic region, not including the critical point, a stable limit distribution requires 
p = 1, as is obvious from equation (3.2). Accordingly one gets a Gaussian limit 
distribution 

Integrating over x gives the effective limit distribution for y, 

From this one derives the fluctuation of y 
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which reduces in the paramagnetic region (H = 0) to 

(Y2)=P/(l-PP). (3.6) 

Obviously, randomness reduces the fluctuations of the order parameter. 

tion emerges from equation (3.2) with p = $ which is given by 
At the critical point H = 0, u0 = 0, p p  = 1 a different, non-Gaussian limit distribu- 

P(X Iy)  = C(X) exp(xy2/2p2-y4/12p3) (3.7) 
with 

c-'(x) = ~ ~ ( N P ) ~ I ' ' ~  Jam: -exp [ -t z + ( ~ ) ' ~ z x t ]  

2 
(3.8) 

C-'(x) is an entire function of x which can be expressed in terms of the parabolic 
cylinder function D-'12. Doing this, one finds 

3x2 xy2 y 4  
+2--- -- X 2  

Xexp(-2p(l-p)  8 p  2p 12p3 

Obviously, In P(x,  y )  is not a polynomial in x and y. 

P( y )  = N1l2  I 
Integrating over x one gets the effective limit distribution P( y): 

+m 

dx P(x,  y )  
--a0 

(3.10) 

with a = [6(1 -p)] ' / ' .  The integral contains, apart from the p dependence of the 
prefactors, the corrections to the limit distribution caused by the randomness of the 
system. Obviously, In P ( y )  is not a polynomial in y. For y +co the integrals can be 
performed asymptotically. Utilising Laplace's method to evaluate the integrals, one 
finds 

lim P ( y ) - I y I  exP[-Y4/6P3(5-3P)l. (3.11) 

The fluctuation of y cannot be calculated from equation (3.10) exactly. For (Y << 1 or 
p = 1, however, one finds 

(3.12) 

with r(:) = 1.225 . . . (Abramowitz and Stegun 1965). Again, ( y2) is a decreasing 
function of p. 

Y-m 

(y2) = (61/z/T)r(:)[i +%(I  -p) (r4( f ) iTZ-  i)] 

4. Results and conclusions 

The effect of the random distribution of spins in this model is quite clear: the critical 
indices are not changed when going from a homogeneous system to a ncn- 
homogeneous, random system. However, the limit distributions are quite different. 



3312 D Wagner 

For T # T, the limit distribution remains a Gaussian one, as expected, and only 
details are different. Fluctuations of the order parameter are smaller than in the 
homogeneous system. 

At the critical point, the effect of randomness on the limit distribution is much 
more pronounced. In the homogeneous case, In P( y )  is a polynomial in y of order 
four; in the inhomogeneous case the analytic properties of In P( y )  are completely 
changed since it can no longer be represented by a polynomial. 

Although the calculations cannot be extended to the more relevant and more 
complicated case of short-range interaction, it seems to be rather obvious that the 
main result of this calculation will be preserved in systems with short-range interaction, 
namely that randomness will cause a drastic change of the analytic properties of the 
limit distribution at the critical point. If this conjecture is correct, it is quite clear that 
any theory based on a simple Ginzburg-Landau-Wilson Hamiltonian for the effective 
partition function of a random spin system (for instance Grinstein and Luther 1975) 
cannot be equivalent to a limit distribution P(  y )  of the kind found in this paper and 
cannot therefore be correct. Obviously, one has to take into account an infinite 
number of products of spin operators, i.e. the Hamiltonian near criticality is probably 
a transcendental function of the spin operators. 
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